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The magic angle spinning (MAS) nuclear magnetic resonance (NMR) technique
has proven successful for obtaining information about molecular structure and mo-
tion in solids. The most advanced description of the MAS NMR experiment involves
the density operator and the stochastic Liouville—von Neumann equation. In this
equation, the effects of the anisotropic nuclear spin interactions are represented by
the Hamiltonian, while the motion involves a stochastic operator. For many sys-
tems, molecular motion may be described by a discrete Markov process. In order
to obtain a solution for a discrete Markov process we have used a Lie algebra for-
malism to rewrite the stochastic Liouville—von Neumann equation in the form of a
linear homogeneous system of coupled first-order differential equations. This system
has periodically time-dependent coefficients and can only be solved by numerical
methods. In this paper, we discuss the use of different Runge—Kutta methods to
approximate the solution. These methods have the advantages of simplicity and rel-
atively high efficiency and may be implemented with automatic stepsize control.
The study involves the most important classes of Runge—Kutta methods including
explicit, semi-implicit, and implicit schemes. The results have shown that the choice
of the Runge—Kutta method depends on the motion. It is found that explicit Runge—
Kutta methods are the most efficient schemes in the slow and intermediate motion
regimes. However, in the fast motion regime, the stochastic Liouville—von Neumann
equation becomes stiff. In this regime, we have used semi-implicit and implicit
Runge—Kutta methods with better stability characteristics. For many semi-implicit
or implicit Runge—Kutta methods, the stiff components are represented inaccurately,
and the methods are shown to be relatively inefficient. In order to improve the ef-
ficiency we have designed and implemented stiffly A-stable Runge—Kutta methods.
These have better stability and accuracy characteristics and are useful in the fast
motion regime. In another approach, we have rewritten the stochastic Liouville—von
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Neumann equation in a form with a vanishing stiffness ratio. Based on this form
we have designed modified explicit Runge—Kutta methods, which are stable and
accurate in the fast motion regime. The results have shown that the Runge—Kutta
methods improve the computational efficiency for small systems by a factor between
two and five compared with the eigenvalue method. The efficiency increases with
the dimension of the system, and for large systems the improvement approaches an
order of magnitude. This is an important result because of the long computation times
involved in MAS NMR lineshape calculations. © 2001 Academic Press

Key Words:nuclear magnetic resonance (NMR); magic angle spinning (MAS);
density operator theory; stochastic Liouville—von Neumann equation; Runge—Kutta
methods; stiff differential systems.

1. INTRODUCTION

The technique of solid-state nuclear magnetic resonance (NMR) spectroscopy [1
has become one of the most important methods for investigating molecular structure
motion in solid materials. At present, the most successful approach is magic angle spin
(MAS) NMR spectroscopy [4-9]. In this method the spectra are reduced to a manift
of spinning sidebands which improves the resolution and sensitivity. In the MAS NM
experiment, the intensity distribution in the manifold of spinning sidebands is defined
the coupling parameters of the anisotropic nuclear spin interactions. These parame
often correlate with structural parameters, such as bond angles and bond lengths, an
important sources of information about molecular structure. In addition to its usefulness
structural analysis, the MAS NMR experiment has been introduced as a valuable met
for investigating molecular motion in solids [10-14]. In the presence of molecular motic
the spectra exhibit lineshape modulations that may be analyzed to determine the moti
mechanism.

The most advanced model for describing the MAS NMR experiment is based on f
stochastic Liouville—von Neumann equation [10-16]. This describes the time evolution
the density operator in the presence of molecular motion. The density operator acco
for all the alignments and coherences in a nuclear spin ensemble and is necessary in
to calculate effects of multiple-quantum transitions and finite pulse widths in MAS NM
experiments. The stochastic Liouville-von Neumann equation includes the nuclear <
Hamiltonian and a stochastic operator. The Hamiltonian is defined by anisotropic nucl
spin interactions, while the form of the stochastic operator depends on the details of
motion. The simplest description of molecular motion is based on a discrete Markov proc
[17]. This involves large amplitude transitions between a finite set of motional states.
this case, the stochastic Liouville-von Neumann equation can be expressed as a |i
homogeneous system of coupled first-order differential equations among the alignme
and coherences. Because of the time dependence induced by MAS, it is impossible to <
this system explicitly. The design and implementation of numerical methods is therefore
important part of the theoretical investigations.

For polycrystalline samples, the calculation of MAS NMR spectra involves two stag
that are equally important in determining the overall efficiency of the computation. In tl
first stage, the stochastic Liouville—von Neumann equation is integrated in time to prod
the time-domain signal for a single crystallite. The second stage is a powder integra
whereby the time-domain signal is integrated over all possible crystallite orientations. 1
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powder integration usually involves a sum of time-domain signals calculated for a suita
distribution of crystallite orientations [18, 19]. The choice of time integration method is
important problem that depends on the exact form of the equations. In this paper we s
that the stochastic Liouville—von Neumann equation is stiff, implying that the numeric
solution of the problem is very difficult.

Note that our initial studies showed that many of the usual methods [20-22] for so
ing stiff systems are relatively inefficient when applied to the stochastic Liouville—vc
Neumann equation. This includes Gear’s method [20], which has previously been app
successfully for many stiff systems. The inefficiency of Gear's method is probably the
sult of the computational overhead involved in the predictor-corrector algorithms. Clea
in the motional regimes where the stiffness vanishes, it is inefficient to implement a s
method. As a result it is unlikely to find a method that is optimum for all motional regime
It is more useful to consider several different integration methods and determine the n
efficient scheme in each motional regime.

In this paper, we have elaborated on the use of different Runge—Kutta methods [23-
which are interesting because of their simplicity and relatively high efficiency. In the first p
of this paper we demonstrate how the stochastic Liouville—von Neumann equation may b
duced to a linear homogeneous system of coupled first-order differential equations. Foll
ing this introduction we consider the principles of Runge—Kutta methods. This is intenc
to establish notation and to summarize the concepts of local and global truncation error
are essential in order to understand the accuracy and stability characteristics of the metl

We have investigated the performance of a set of representative Runge—Kutta metl
including explicit, semi-implicit, and implicit methods. These have been used to calcul:
motional effects on deuteron MAS NMR spectra [8, 9, 12, 14]. We have elaborated
deuteron experiments because these are used extensively for investigations of mole
motion. The results have shown that explicit Runge—Kutta methods are most efficient
slow and intermediate molecular motion. However, for fast motion, the equations becc
stiff, making explicit methods inefficient. We show that there are two different strategi
that may be used for these stiff systems. The most obvious approach is to implement s
implicit or implicit Runge—Kutta methods that are sufficiently stable and accurate. Anott
strategy is to rewrite the stochastic Liouville—von Neumann equation in a form with
vanishing stiffness. In this paper, we introduce a transformation that eliminates the stiffn
completely. Because the transformed system may be integrated with explicit methods
computational efficiency is improved significantly.

2. PROBLEM FORMULATION

2.1. The Stochastic Liouville—von Neumann Equation

In modern Fourier transform NMR spectroscopy, the experimental method is basec
measuring the response of an ensemble of nuclear spin systems to an external mac
perturbation [1-3]. This is usually a sequence of radio frequency pulses designed to cr
observable coherences in the ensemble, which evolve in time to generate the obsen
time-domain signal. The action of anisotropic nuclear spin interactions combined with
effect of molecular motion determines the characteristics of the response. From the f
of the time-domain signal, it is therefore possible to deduce many details about molec
structure and motion.
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The description is usually concerned with a statistical ensemble because the experir
is performed on a sample with a large number of randomly distributed spin systems. -
physical state of the ensemble is described by the density operdforwhich contains
all the information about the observable properties of the system [27]. In the presenct
molecular motion, the density operator evolves according to the stochastic Liouville—\
Neumann equation [10-16]

d
ﬁla(t» = Ao (D), (2.1)
which includes the coefficient operator
A(t) = —iAd(H()) + E, (2.2)

where Ad(H (1)) is the adjoint Hamiltonian an& the stochastic operator.

In order to solve the stochastic Liouville—von Neumann equation, it is useful to impl
ment matrix representations spanned by the group genefétgés) | m=1,...,M,n =
1,..., N} whereM is the number of alignments and coherences Bnthe number of
motional states [28—30]. Each group generator is given by the \glué a stochastic
variable that defines the motional state. The group generators define the basis ve

{I112En), - .., 1Im(&n))} which satisfy the orthogonality condition
MeGmlh@n)) _ o 5 (2:3)
(lk(Em) 1k (Em))
and completeness relation
M
ZZ [mEn)) (Im(En)l —E. (2_4)
m(én)||m(€n)>

m=1n

The closure property of the group generators is expressed by the commutation relatior

M
Ad(lED)I 1 En) = (HkEn. T EDD = el m(En)). (2.5)
m=1

wherecy] are the structure constants [28—-30]. The commutation relation may be rewrit
in the form

{Im(En) Ak (ENIN En)) o (2.6)
(Im(&n)[1m(n))

which defines the matrix representation of all adjoint operators. The completeness img
that

N M N

s =) o)=Y omn,lmGE, (2.7)
n=1 m=1n=1

Ht) = Z Hn, t) = Z Z Hin(€n, ) m(&n), (2.8)

m=1n=1
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where the expansion coefficients

(Im(En)o )
m n,t el — 2.9
omEn D = e ImEn) (2:9)
ety = (mEIHO) 2.10)

(ImEn)I1m(En))

The stochastic Liouville-von Neumann equation may be developed by inserting
expansion of the density operator (Eq. (2.7)) and using the orthogonality (Eq. (2.3))
the group generators. This leads to the linear homogeneous system of coupled first-c
differential equations

0
sloe®) = Ao (1)), (2.11)

whereo (1) = {ok (&, 1)} is an MN-dimensional vector and(t) = {a (&, &, t} a time-
dependent¥IN, MN)-dimensional coefficient matrix. The elements of the coefficient matri
are

(IkEDIADILIEs)  (IkEDIEINES) . (IkEDIAH D) ()

rés, )= = -
G D=0 OG- @IkE) (k@G
(2.12)
where
(&) AD(H )11 (E)) u )
= s Hm(&, t s 2.13
(kG &) 2, Hnér. 213
L&) B (&
(kEIEIE) _ o o 214

(leE)1k ()

specify the elements of the adjoint Hamiltonian and the stochastic operator. These equa
lead to

M
A (& s, 1) = SwB(E . &) —ids Y Hm(& . G, (2.15)

m=1

which gives an explicit expression for the elements of the coefficient matrix.

The stochastic operator is defined by the details of the motion. For many systems mol
lar motion may be represented by a discrete Markov process [17]. In this model, the mo
is described by transitions between a finite set of motional states, and the elements o
stochastic operator are

E(‘i"m» %‘n) = knm,

N 2.16
E(m, &m) = — Y _[1 — SmnlKann, (2.10)

n=1

whereknn is the rate constant for the transition from #eto &, motional state. This model
is sufficiently accurate for systems with high activation energies and low temperatures.
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The stochastic Liouville—von Neumann equation is usually solved subject to an init
condition. In this case, the formal solution may be expressed by

lo(t)) = F(to, o (t0)), (2.17)

where the propagator

t

F(to, t) = T exp /A(r) dr (2.18)

to

is a time-ordered exponential. The time ordering implies that there is no explicit solutic
and it is necessary to implement numerical integration methods. There are several diffe
techniques that may be used to solve the stochastic Liouville—von Neumann equatior
one approach, the system is solved directly to give the alignments and coherences. Thi
the advantage that the dimension of the system is at a minimum. Another method is be
on the equation

R, = AOF(o.), (2.19)

which may be solved for the propagator. This is then used to determine the time evolu
of the alignments and coherences. In this method the dimension of the system is lai
However, because of the periodicity of the MAS NMR Hamiltonian the propagator obey

F(to,t) =F(to +nT, t +nTp), (2.20)

whereT, = £ is the rotation period [4—6]. This demonstrates that it is only necessary
evaluate the propagator for one rotation period. The result is an improvement in com
tational efficiency that often more than compensates for the increased dimension. F
polycrystalline sample, the solution must be integrated over all crystallite orientations.
the case of MAS, the dependence of the propagator on the crystallite orientation may
transcribed into a time shift

F(to, t, o, B, )/)=F<to+y,t+y,ot,ﬁ,0), (2.21)
w

r wr

which leads to an additional improvement in computational efficiency [31].

2.2. Example Application

In this paper we apply the above formalism to deuteron MAS NMR spectroscopy [8,
12, 14]. This provides an example of widespread interest and importance that is sufficie
general to reveal most of the properties of the stochastic Liouville—von Neumann equat
Because deuterons are SU(3) nuclear spin systems, the alignments and coherences n
represented by irreducible cartesian SU(2) tensor operators for SU(3) [30]. It is noted 1
there are other group generators [32—-34] but the irreducible cartesian SU(2) tensor oper
for SU(3) are optimum for the description of nonselective and symmetric experiments.
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the absence of rf irradiation, the deuteron MAS NMR Hamiltonian is

H) = Z HG (En. 1), (2.22)

which includes the first-order quadrupole interaction [6, 7]. This is given in terms of irr
ducible cartesian SU(2) tensor operators for SU(3) by

HY (En 1) = \[ (. D1 2(En). (2.23)

where the angular first-order quadrupole frequency

3
0 (En, 1) = \@Az%(sn, t). (2.24)

This is specified in terms of the second-rank irreducible cartesian quadrupole tensor

A En. 1) = pQ ENT P (QE))TP ()T (Q5(1)). (2.25)

where
2 _7Con) 0.4/3.0,0 2.26
o (En) = AT I { nq(€n). 0, /3,0, 0} (2.26)

is the principal second-rank irreducible cartesian quadrupole tensor. This model inclu
the quadrupole coupling consta® (§,) and asymmetry parameteg (£,). The second-
rank irreducible cartesian representation makti () defines the transformations. The
motional states are specified by the Euler an§ile&,) = {a1(&n), B1(&n), y1(En)}. These
represent the transformation from the principal axis system of the quadrupole tenso
the crystallite fixed axis system. The Euler angfgs= {w2, B2, 12} specify the relative
orientation of the crystallite and rotor fixed axis systems. The transformation from t
rotor to the laboratory fixed axis system is given@y(t) = {ort, 6, 0}, wherew; is the
angular rotation frequency ardis the angle between the rotation axis and the magnet
field.

By implementing the irreducible cartesian SU(2) tensor operators for SU(3), the den:
operator may be represented by aw-8imensional state vector with elements

[oO]sm-1+1 = oxEm, 1),  [oD]sm-1+2 = T2(Em, 1),

[e®]em-1+3 = oyEm, 1), [O]sm-1+4 = ox2—y2(Em, 1),

(2.27)
[U(t)]8(m71)+5 = Oxz(&m, 1), [U(t)]s(mfl)+6 = 0.2(m, 1),
[U(t)]B(m—l)-H = O'yz(éma t), [U(t)]B(m—l)+8 = ny(émy t).
wherem =1, ..., N. The element#,(&,, t) ando 2 (&, t) are the dipole and quadrupole

alignments, respectively. The dipole single-quantum coherences @ t) andoy (&5, 1),
while ox,(&n, t) and oy,(&n, t) specify the quadrupole single-quantum coherences. Tt
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quadrupole double-quantum coherencesagee 2 (£n, t) andoyy (&, t). In this case, the
elements of the (8,8N)-dimensional coefficient matrix are

1
[AO]sm-1+7.8m-1+1 = [AD]sm-1+38m-1+5 = w(Q)(Em, t),

[AO]sm-1+1.8m-1+7 = [AD]sm-1+58m-1+3 = —wS) (&m, 1), (2.28)
[AO]sm-1)+k 8n-1)+k = E(Em. &n),
wherem,n=1,...,Nandk =1,..., 8.Ithas been shown that theN8N)-dimensional

coefficient matrix may be reduced into eight irreducibid, I )-dimensional coefficient
matrices [14]

[Admn = [A2lmn = [Aslmn = [Ad]mn = EEm, &n),
[Aslmn = [Adlmn = E(Em. &) — 10§ Em. D)mn, (2.29)
[Aelmn = [Aelmn = E(Em. &) + 0§ Em. )mn,
wherem,n =1, ..., N. The systems defined by the time-independent coefficient matric
are solved most efficiently by the eigenvalue method [12-14]. For the time-depend

systems, there is no explicit solution, and it is necessary to implement numerical integra
methods.

3. THE RUNGE-KUTTA FORMALISM

The results of the previous section have demonstrated that the stochastic Liouville—
Neumann equation is equivalent to a linear homogeneous system of coupled first-o
differential equations. In this paper we consider the application of Runge—Kutta meth
to solve this system [23—-26]. The Runge—Kutta methods are designed to provide a solu
to the system

3
5y © =fty®). (3.1)

wherey(t) = {y(t)} andf(t, y(t)) = { fk(t, y(t))} are subject to an initial condition. It is
usually impossible to obtain an explicit solution. The objectis therefore to find for a sequer
of independent variabldg, sequence of approximate solutiop@). In the Runge—Kutta
formalism the solution is

Y(ter1) = Y(t) + St® (b, J(t), Sti), (3.2)

wherety 1 = tx + 8t is given by the stepsizét,. The approximate increment function
takes the form

q
B(t, J(t), 8t) = > wiGr, (3.3)

r=1

wherew, (r =1, ..., q) are weighting coefficients and

q
O = f <tk + ay 8ty 9(tk) + Sty Z ,Brsgs> s (3-4)

s=1
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is given in terms of the parameters(r = 1,...,q) andgs (r,s=1,...,q). Itis useful

to classify the Runge—Kutta methods by the structure of the makex {5;s}. For an
explicit Runge—Kutta method is lower triangular and ang: may be obtained in terms of
O1, ..., 0 —1. A semi-implicit Runge—Kutta method has elements on the diagon@laofd
anyg is defined bygs, .. ., g-. Implicit Runge—Kutta methods have elements in the uppe
right triangle of3, and anyg; is given in terms ofy,, ..., gq.

4. STABILITY AND ACCURACY OF RUNGE-KUTTA METHODS

4.1. Introductory Remarks

In order to understand the performance of Runge—Kutta methods it is necessary to
sider the stability and accuracy characteristics [23—26]. For simplicity we restrict the ¢
cussion to the system

a
Y = A®y(®), (4.1)

where y(t) = {yk(t)} is an N-dimensional vector and\(t) = {ax(t)} is an (N,N)-
dimensional coefficient matrix. The equation is subject to an initial condition in whic
case the solution obeys

s—-1

y(te) = T [ ] Ft. trn) Iy (). (4.2)

k=r
The Runge—Kutta formalism leads to an approximate solution

s—1

V(ts) = T [ [ Flt, ter) 1Y (8)), 4.3)

k=r

whereF (i, t,1) is an approximate propagator. For a small integration interval, the prop
gator is

F(ty, tkr1) = explASty). 4.9

The approximate propagator is given for any Runge—Kutta method by the rational funct

-1

Z a [Asty]"

r=0

Ft, tr1) = , (4.5)

lz bs[Ast]®
s=0

wherea, andbs are constants. By implementing the eigenvalue equ#@r= QA, where
Q = {A\n} is an eigenvector matrix amtl = {Amdmn} an eigenvalue matrix, the propagators
may be rewritten as

F(te, 1) = Q exp(Ast)Q 1, (4.6)
m n -1

Fltw te) = Q| Y a[Ast]' [Z bs[ASt]®| Q' 4.7)
r=0 s=0
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From these equations one finds that the components of the solution are defi
by

N s—1
yitts) = cjt) ] ] expr;sto), (4.8)
j=1 k=r

whereg;; (t;) are constants. The components of the approximate solution are

N s—1
yittd) = > cijt) [ [ n@rjsto. (4.9)
j=1 k=r

where the characteristic roots

n(rjdty) =

m n -1
> al jatk]f] [Z bs[A jﬁtk]s] ) (4.10)
s=0

r=0

4.2. The Local Truncation Error

The accuracy of a Runge—Kutta method is defined by the local truncation error t
represents the difference between the exact and approximate solutions obtained in
step from an exact initial condition [23—26]. For a linear homogeneous system of coup
first-order differential equations, the local truncation error may be obtained from

IT (tks 1, 8t)) = [F(tk, thra) — Fti, ter)] 1Y (). (4.11)

Because the exact and approximate solutions must be close, it is evident that the |
truncation error i (tx, 1, 8tx) = O(Stkp“) where the ordep is a measure of the accuracy
of the method. This shows that any scheme involhgrggages may be classified asm q)
Runge—Kutta method [24]. The elements of the local truncation error may be rewritten in

form

N

Ti (i1, 8t = Y Gj (B)[EXPOLt) — p(2j880], (4.12)
j=1

which reveals that the characteristic roots must approximate the exact solution compon
closely in order to obtain a valid numerical solution. This relationship is expressed by 1
error function

O(8t0"1) = exp(njdte) — u(rjdte), (4.13)
which may be plotted as function @8t in order to visualize the accuracy.

4.3. The Global Truncation Error

The performance of Runge—Kutta methods depends not only on the accuracy but .
on the stability characteristics [23-26]. The stability refers to the behavior of the glok
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truncation error

s—1 s—1
le(ts)) = | T [[ Flt. tern) = T [ Ft. tera) | ly(to)), (4.14)
k=0 k=0

which is the difference between the exact and approximate solutions obtained in sev
steps from an exact initial condition [23—26]. The global truncation error may be rewritt
in the form

N
silts) = ) Gj (to)[exp(shjst) — u(rj6t)°], (4.15)
j=1

where it has been assumed that all stepsizes are equal. It is obvious that a valid solt
must satisfy

N
lei (ts)] < Y 1Gij (to) || €xp(sj 81)1, (4.16)
j=1

which indicates that the global truncation error remains small relative to the exact soluti
Because the characteristic roots must approximate the exact solution components clc
it is also required that

N
lei (ts)] < Icij (to) |2 (A 81) . (4.17)
j=1

When these equations are satisfied the method is said to be numerically stable [23,
A linear homogeneous system of coupled first-order differential equations is inherer
stable if R€x;) < 0. For these systema (1;5t)| < 1 defines the requirement for numer-
ical stability. When this condition is satisfied the method is called absolute stable. T
stability characteristics of a method may be visualized by its region of absolute stabi
{Aét]|u(A81)] < 1}. Amethod with afinite region of absolute stability is called conditionally
stable, while a method with an infinite region of absolute stability is denoted unconditione
stable. If the region of absolute stability contains the entire negative-half-plane, the met
is A-stable. For a conditionally stable method, the step&izaust be chosen carefully in
order that st is contained within the region of absolute stability. However, there is n
guarantee that all values 6t for which 15t are within the region of absolute stability
will yield an accurate solution. The relationship between stability and accuracy is tt
fundamental to the choice of stepsize.

5. SPECIFIC RUNGE-KUTTA METHODS

5.1. Explicit Methods Based on Newton—Cotes Quadrature Formulas

Because the efficiency of a Runge—Kutta method depends on the number ofjstiaiges
desirable to choose the smallest valug obnsistent with the ordgs. For explicit methods
of orderl< p < 4the smallest number of stages|is- p. Asthe order is increased a larger
number of stages is required. The smallest number of stages-ip + 1 for5< p <6
andg = p+ 2 for 7 < p [35]. This does not detract from the usefulness of higher-orde
methods since these may be used with a larger stepsize [36—39]. A representative third-
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scheme is the classical explicit (3,3) Runge—Kutta method [40]

~ R 1

D (ty, Y(t), Sty) = 5[91 + 49 + 03],
01 = f(t, (1)),

(5.1)
1 R 1

O = tk + 8t Y(t) + 56t |,
2 2

03 = f(tx + Stk, 9(tk) + §tk[292 — a1),

and a useful fourth-order scheme is the classical (4,4) Runge—Kutta method [40]

. 1
D (ty, Y(t), 8ty) = é[gl + 2092 + 293 + 94],
a1 = f(t, (),

1 R 1
0= f(tk + §5tk, Yt + EStkgl>a (5.2)

1. 1
gs = f( tk + 50, Y(t) + 5002 ),
2 2
04 = f(tk + 8t, Y(tk) + 6tQs).
In order to achieve fifth-order accuracy for an explicit Runge—Kutta method, a minimum
six stages is required. An example is the Butcher explicit (5,6) Runge—Kutta method [3

. 1
D (t, Y(t), Sty) = %[791 + 3293 + 1294 + 3295 + 70¢],
a1 = f(t, (),

—ft+}6t A(t)+}8t
02 = k 4k,Yk 4k91,

1 . 1
Oz = f(tk + thka y(te) + §3tk[91 + 92]>, (5.3)

1 . 1
04 = f(tk + EStk, y(ty) + EStk[_gl + 292]) s

3. 1
g5 = f(tk + Zatk, Yt + 1—65tk[3gl + 994]>,

. 1
Os = f<tk + 8, Y(te) + ?Stk[_‘?’gl +29, + 1295 — 129, + 895]>~

The stability and accuracy characteristics are illustrated in Fig. 1, which shows that
methods are conditionally stable. The accuracy is seen to increase by an order of magni
in going from the (3,3) to the (4,4) method and by another order of magnitude in going frc
the (4,4) to the (5,6) method.

5.2. Implicit Methods Based on Gauss—Legendre Quadrature Formulas

The advantages of implicit Runge—Kutta methods are high orders for the number
stages and desirable stability characteristics. In cases where stability is more impor
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FIG. 1. Region of absolute stability (first column) and error function (second column) for explicit Runge
Kutta methods. The figure includes the classical explicit (3,3) Runge—Kutta method (first row), the classical exp
(4,4) Runge—Kutta method (second row), and the Butcher explicit (5,6) Runge—Kutta method (third row).

than accuracy, implicit methods may perform better than explicit methods. A useful cl:
of implicit methods is defined by the Gauss—Legendre quadrature formulas. For each :
formula, there is an implicit Runge—Kutta method of orget 2q [41]. An example is the
implicit (4,2) Runge—Kutta method of Gauss type

L 1
D (ty, Y(t), Sty) = 5[91 + 02,

3-V3]. . 1 3-2/3
o= f(tk + %Mk, Yt + Z(“kgl + %Stk%), (5.4)

3+V3]. - Zf
02 = f<tk + %(Stk, y(t) + 3 ]Stkgl + 8tk92>
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FIG. 2. Region of absolute stability (first column) and error function (second column) for semi-implicit an
implicit Runge—Kutta methods. The figure includes the implicit (4,2) Runge—Kutta method of Gauss type (fi
row), the semi-implicit (3,2) Runge—Kutta method of first Radau type (second row), and the semi-implicit (4
Runge—Kutta method of Lobatto type (third row).

The accuracy and stability are revealed by Fig. 2, which shows that the scheme is A-ste
The error function demonstrates that the method has a relatively high accuracy for
number of stages.

5.3. Implicit Methods Based on Radau Quadrature Formulas

Another important class of implicit Runge—Kutta methods is derived from the Rad.
guadrature formulas. For each such formula there is a Runge—Kutta method opaceder
2g — 1 [42]. In the first type of Radau quadrature formulas, the ordinates are subject to
constraint thatr; = 0 which is the same as saying that the derivatives must be evaluatec
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the initial point. A typical example is the semi-implicit (3,2) Runge—Kutta method of firs
Radau type

A 1
D (t, Y(t), Otx) = Z[gl + 3092],
g1 = f(tk, Y(t)), (5.5)
2 1
O = f<tk + §5tk, y(t) + §5tk[91 + 92])-
The second type of Radau quadrature formulas is obtained by imposing the condition

agq = 1which meansthat the derivatives must be evaluated inthe final point. Arepresentz
example is the semi-implicit (3,2) Runge—Kutta method of second Radau type

. 1
® (1, Y(t), Sty) = 1[391 + 02,

3
O = f(t + 8, Y(te) + Stkga).

1 . 1
01 = f(tk + =8t Y(t) + 35tk91>, (5.6)

The accuracy and stability properties are shown in Fig. 2, which demonstrates that
methods are conditionally stable. The accuracy is low and corresponds to the explicit (.
Runge—Kutta method.

5.4. Implicit Methods Based on Lobatto Quadrature Formulas

The Lobatto quadrature formulas define another class of implicit Runge—Kutta methc
The ordinates are subject to the constraints éhat 0 andaq = 1 which means that the
derivatives must be evaluated in the first and final points. For each Lobatto formula,th
is a Runge—Kutta method of ordpr= 2q — 2 [42]. A useful example is the implicit (4,3)
Runge—Kutta method of Lobatto type

~ . 1
D (t, Y(t), St) = 6[91 + 49> + 93],

o1 = f(t, ¥(t)),
5.7)

1 . 1
Q= f<tk + §5tk, Y(te) + Z‘Stk[gl + 92]>,
Oz = f(tx + Sti, Y(t) + Stk).

The accuracy and stability properties are shown in Fig. 2. This reveals that the methc
conditionally stable with an accuracy that corresponds to the implicit (4,2) Runge—Ku
method of Gauss type.

6. NUMERICAL EXPERIMENTS

6.1. Preliminaries

The usefulness of the Runge—Kutta formalism depends not only on the integration met
but also on the system of differential equations. This implies that Runge—Kutta meth
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that have proven useful for some systems may be inferior in other cases. In this sec
we evaluate the performance of different Runge—Kutta methods for solving the stocha
Liouville—von Neumann equation applied to deuteron MAS NMR spectroscopy. Inthis ca
the coefficient matrix may be reduced into eight independent systems (Egs. (2.29)).
time-independent systems are solved most readily by the eigenvalue method. For the pe
ically time-dependent systems, we have applied Runge—Kutta methods to obtain a solu

The results are for a deuteron system subject to molecular motion and MAS conditic
with the rotation frequency, = 5 kHz. It is assumed that the quadrupole coupling con
stant G, = 200 kHz and asymmetry parametgs = 0.10. These parameters reflect the
small and nearly axially symmetric quadrupole interaction that characterizes most deute
systems. The motion involves discrete rotation about a crystallite fixed axis with ro
tion anglesg, = 2—”[,r\‘l;11 (n=1,...,N). These define the values of a discrete stochas
tic variable which evolves according to a discrete Markov process with rate consta
Kmn = knm = Smneik (N =1, ..., N — 1) andk;y = ky1 = k. The relative orientation of
the principal axis system of the quadrupole tensor and the crystallite fixed axis syster
defined by the Euler angl€¥(¢,) = {0, arctan(v/2), &} (n = 1, ..., N). This model repre-
sents molecular motion in many important systems and has the advantage of computat
simplicity.

The performance of the Runge—Kutta methods was evaluated by comparing computs
times used to calculate a sequence of approximate solujid@gs corresponding to the
independent variablés = 2n (1s). The computation time depends on the number of point
in the sequence, and it is noted that the results are for the calculation of a sequence
one thousand points. In this case the computation time includes contributions from both
evaluation of the propagator and the evolution of the density operator. Both of these elem
are critical factors in terms of execution time. It is evident that the computation time depel
on the crystallite orientation. The numerical results were therefore averaged over a unif
distribution of crystallites. This implies that the computation time for a polycrystallin
sample may be estimated by multiplying the results by the number of crystallites.

The calculations were performed with Fortran 95 programs on a 400 MHz du
Pentium Il computer with 256 Mb RAM. It is noted that the execution time depends ¢
both the operating system and the Fortran compiler. We have compared computation ti
for the Windows NT and Linux operating systems using the Compaq Visual Fortran
and PGI Fortran 90 and HPF compilers. The results have demonstrated that the Con
Visual Fortran 95 compiler executing under Windows NT is the most efficient environme
on our system. The programs were all subject to full serial optimization to improve tl
performance.

6.2. Comparison of Runge—Kutta Methods

The classification of the Runge—Kutta methods is important because the individual clas
have different stability and accuracy characteristics. As representative explicit schemes
consider the classical explicit (3,3) Runge—Kutta method (Egs. (5.1)), the classical expl
(4,4) Runge—Kutta method (Egs. (5.2)), and the Butcher explicit (5,6) Runge—Kutta mett
(Egs. (5.3)). These methods were implemented in two different algorithms using either fi;
stepsizes or automatic stepsize control [23—-26]. For fixed stepsizes, the classical exj
(3,3) Runge—Kutta method is Method 1a, the classical explicit (4,4) Runge—Kutta metho
Method 2a, and the Butcher explicit (5,6) Runge—Kutta method is Method 3a. For autom:
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stepsize control, the methods are denoted Method 1b, Method 2b, and Method 3b. S
examples of implicit schemes are the implicit (4,2) Runge—Kutta method of Gauss t
(Egs. (5.4)), the semi-implicit (3,2) Runge-Kutta method of first Radau type (Egs. (5.5
and the semi-implicit (4,3) Runge—Kutta method of Lobatto type (Egs. (5.7)). In the ce
of fixed stepsizes, the implicit (4,2) Runge—Kutta method of Gauss type is Method 4a,
semi-implicit (3,2) Runge—Kutta method of first Radau type is Method 5a, and the sel
implicit (4,3) Runge—Kutta method of Lobatto type is Method 6a. For automatic stepsi
control, the methods are Method 4b, Method 5b, and Method 6b.
The computation times were obtained for the stepsétes 0.1 us, t = 0.2 us, and

8t = 0.4 us which are representative for calculations of deuteron MAS NMR spectra. T
effects on the accuracy of decreasing the stepsize depend on the specific Runge—
method. As an example, we have investigated the accuracy of Method 2a for different fi
stepsizes. The results shown in Fig. 3 reveal that the accuracy improves significantly
decreasing the stepsize. However, it is expected that the increased round-off error rest
from a decreasing stepsize will eventually reduce the accuracy. This suggests that t
may be both a minimum and maximum value of the allowed stepsize. Because a fi
stepsize may result in an inaccurate and inefficient calculation, it is interesting to comg
the results with automatic stepsize control. The algorithms for automatic stepsize cor
were based on the Richardson extrapolation procedure for estimating the local trunce
error [23-26]. The methods used the local error tolerafgp¥ = 1073, TM* = 1074,
andT" = 10-°, which are typical for simulations of deuteron MAS NMR spectra. The

5t = 0.4 us

6t = 0.2 us

6t=0.1us

T T T 1 T T

200 -100 0 100 200 -200 -100 0 100 200
v (kHz) v (kHz)

FIG. 3. Theoretical deuteron MAS NMR spectra (left column) and absolute error (right column) calcl
lated with the classical explicit (4,4) Runge—Kutta method for different fixed stepsizes. The results are ft
deuteron quadrupole tensor that reorients between two orientgfighs = {0, arctanv/2), 0} and Q(&,) =
{0, arctar(~/2), 7}. The calculations used the quadrupole coupling con§lgnt 200 kHz, asymmetry parame-
ternq = 0.10, rotation frequency, = 5.0 kHz, and rate constakt= 10? Hz.
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TR =107

e = 1074

T““”‘ 10°*

200 -100 0 %0 ' 200 —200 —-1f00 0 100 200
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FIG. 4. Theoretical deuteron MAS NMR spectra (left column) and absolute error (right column) calculat
with the classical explicit (4,4) Runge—Kutta method for different local error tolerances. The results are
a deuteron quadrupole tensor that reorients between two orient&i@as = {0, arctanv/2), 0} andQ (&) =
{0, arctar(~/2), 7r}. The calculations used the quadrupole coupling con§lgnt 200 kHz, asymmetry parameter
no = 0.10, rotation frequency, = 5.0 kHz, and rate constakt= 10? Hz.

effects of decreasing the local error tolerances are shown in Fig. 4 for Method 2b. T
results demonstrate that the accuracy improves as the local error tolerances are decre
However, the differences are too small to justify the use of very small error tolerances. -
execution times were determined as function of the number of motional Btédes fixed
rate constank = 10° Hz. The results are listed in Tables | through VIl and illustrated ir
Figs. 5 through 7. For automatic stepsize control, the execution times were determinec
N = 2 as function of the rate constantThe results are listed in Table VIII and shown in
Figs. 8 and 9.

From the computational results the stability characteristics of the Runge—Kutta meth
become apparent. It is recalled that the stability is determined by the eigenvalue struc
of the coefficient matrix. For the systems discussed in this paper, the coefficient ma
is of the formA(t) = E +iQ(t), whereE = {E(&m, &)} IS the stochastic matrix and
Q) = {w(l) (&n, t)dmn}. For a system with two motional states, the eigenvalues are

h= 5[0 &) +0d (&) + \/4'<2 0g (t, &) — 0t &))"~
(6.1)

ho = iz[ Dt &) + 02 (t, &) - f\/ A2 — [0l (1. &) — 0 (1. £2)]° -

which show that the real parts are always less than or equal to zero. This is valid
any coefficient matrix, and the stochastic Liouville—von Neumann equation is therefore



TABLE |
Absolute CPU Times (s) for the Eigenvalue Method

N 8t =0.4pus 8t =02pus 8t =0.1pus
2 0.0284 0.0555 0.1095
3 0.0545 0.1072 0.2125
4 0.0786 0.1549 0.3073
5 0.1175 0.2321 0.4608
6 0.1628 0.3213 0.6387
7 0.2231 0.4415 0.8784
8 0.2863 0.5667 1.1281
9 0.3852 0.7633 1.5196

10 0.4811 0.9541 1.9003

Note.The results are for a deuteron quadrupole tensor whose principal axis system
reorients betweei different orientations2 (&,) = {0, arctari~/2), ﬁ“;‘;”}(n =
1, ..., N). The motion is described by a discrete Markov model with rate constants
Knn = Kom = 8mnp2lPHZ(N=1,..., N — 1) andk;y = kn; = 10* Hz. The cal-
culations used the quadrupole coupling cons@gt= 200 kHz, asymmetry pa-
rametemq = 0.10, and rotation frequenay = 5.0 kHz.

TABLE 1l
Absolute CPU Times (s) for Runge—Kutta Methods Using Fixed Stepsizé% = 0.4 us

Method 1a Method 2a Method 3a Method 4a Method 5a Method 6a Method 7a Method 8a Method 9a Method

N

2 0.0059 0.0075 0.0113 0.0336 0.0137 0.0151 0.0330 0.0098 0.0117 0.0449
3 0.0091 0.0117 0.0175 0.0573 0.0234 0.0249 0.0571 0.0136 0.0176 0.0605
4 0.0124 0.0158 0.0243 0.0883 0.0361 0.0400 0.0892 0.0156 0.0215 0.0664
5 0.0199 0.0255 0.0393 0.1351 0.0542 0.0605 0.1363 0.0254 0.0352 0.0957
6
7
8
9
0

0.0278 0.0357 0.0554 0.1933 0.0786 0.0874 0.1953 0.0332 0.0410 0.1192
0.0397 0.0509 0.0786 0.2638 0.1040 0.1182 0.2683 0.0449 0.0566 0.1582
0.0495 0.0638 0.0973 0.3465 0.1338 0.1553 0.3545 0.0527 0.0605 0.1758
0.0679 0.0876 0.1348 0.4573 0.1821 0.2051 0.4688 0.0703 0.0859 0.2363
0.0866 0.1121 0.1750 0.5832 0.2261 0.2563 0.5976 0.0879 0.1054 0.2969

TABLE IlI
Absolute CPU Times (s) for Runge—Kutta Methods Using Fixed Stepsizes = 0.2 us

Method 1a Method 2a Method 3a Method 4a Method 5a Method 6a Method 7a Method 8a Method 9a Method

N

2 0.0108 0.0140 0.0214 0.0669 0.0264 0.0297 0.0647 0.0156 0.0234 0.0898
3  0.0169 0.0219 0.0356 0.1172 0.0444 0.0483 0.1124 0.0234 0.0352 0.1152
4 0.0231 0.0298 0.0469 0.1768 0.0708 0.0771 0.1761 0.0293 0.0410 0.1367
5 0.0372 0.0485 0.0759 0.2710 0.1050 0.1182 0.2704 0.0508 0.0645 0.1855
6
7
8
9

0.0563 0.0682 0.1070 0.3862 0.1528 0.1709 0.3864 0.0625 0.0801 0.2344
0.0752 0.0977 0.1528 0.5268 0.2041 0.2324 0.5304 0.0879 0.1094 0.3125
0.0948 0.1232 0.1900 0.6934 0.2622 0.3047 0.7034 0.0977 0.1172 0.3457
0.1299 0.1693 0.2632 0.9092 0.3574 0.4033 0.9288 0.1367 0.1642 0.4668
10  0.1667 0.2174 0.3424 1.1602 0.4458 0.5049 1.1858 0.1660 0.1973 0.5879

TABLE IV
Absolute CPU Times (s) for Runge—Kutta Methods Using Fixed Stepsizés = 0.1 us

Method 1a Method 2a Method 3a Method 4a Method 5a Method 6a Method 7a Method 8a Method 9a Method

N

2 0.0208 0.0270 0.0418 0.1323 0.0508 0.0571 0.1235 0.0313 0.0469 0.1758
3 0.0323 0.0424 0.0657 0.2319 0.0864 0.0947 0.2197 0.0469 0.0664 0.2305
4 0.0446 0.0580 0.0919 0.3516 0.1392 0.1519 0.3472 0.0586 0.0781 0.2676
5 0.0717 0.0944 0.1491 0.5386 0.2075 0.2334 0.5366 0.0957 0.1270 0.3672
6
7
8
9

0.1024 0.1333 0.2106 0.7681 0.3018 0.3384 0.7656 0.1230 0.1543 0.4668
0.1463 0.1913 0.3012 1.0469 0.4028 0.4595 1.0586 0.1719 0.2129 0.6172
0.1853 0.2418 0.3753 1.3799 0.5186 0.6035 1.3960 0.1875 0.2305 0.6914
0.2536 0.3326 0.5195 1.8130 0.7056 0.7993 1.8423 0.2656 0.2503 0.9219
10 0.3266 0.4276 0.6769 2.3120 0.8823 1.0024 2.3620 0.3662 0.3926 1.1660

433
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TABLE V
Absolute CPU Times (s) for Runge—Kutta Methods Using Automatic Stepsize Control
with the Local Error Tolerances T = 10-3

N Method 1b Method 2b Method 3b Method 4b Method 5b Method 6b Method 7b Method 8b Method 9b Method 1

2 0.0075 0.0084 0.0129 0.0469 0.0166 0.0190 0.0386 0.0117 0.0156 0.0547
3 0.0128 0.0132 0.0203 0.0874 0.0278 0.0303 0.0664 0.0176 0.0215 0.0722
4 0.0193 0.0182 0.0282 0.1611 0.0444 0.0479 0.1147 0.0254 0.0273 0.0820
5 0.0334 0.0291 0.0455 0.2495 0.0664 0.0737 0.1660 0.0449 0.0410 0.1133
6 0.0504 0.0409 0.0639 0.3975 0.1260 0.1040 0.2544 0.0566 0.0508 0.1445
7 0.0758 0.0584 0.0912 0.5757 0.1401 0.1430 0.3599 0.0820 0.0703 0.1914
8 0.0959 0.0723 0.1133 0.7554 0.1875 0.1860 0.4736 0.0918 0.0742 0.2109
9 0.1332 0.0993 0.1571 1.0186 0.2422 0.2432 0.6147 0.1270 0.1035 0.2871
10 0.1741 0.1286 0.2065 1.3232 0.3174 0.3135 0.8340 0.1621 0.1270 0.3555

inherently stable system. In the slowyg < 10* Hz) and intermediate (fMHz < knn <
10" Hz) motion regimes the eigenvalues may be approximated by

A1

g (t. &) —k,

6.2
iwd(t, &) — K, (62)

A2

which are sufficiently accurate provided tha& 1|3’ (t, £1) — 0§’ (t, £)|. Inthe slowand
intermediate motion regimes one finds that the magnitudes @f;)nand Inm(A,) are larger
than the magnitudes of Re) and RéA.,), respectively. This shows that the magnitudes of
the eigenvalues and the corresponding stepsizes are independent of the rate constant
is verified by the computation times which are invariant (Figs. 8 and 9) in the slow al
intermediate motion regimes.

The regular pattern observed in the slow and intermediate regimes changes for
(10" Hz < kmn) molecular motion. By considering the eigenvalues in the fast motion regin
one finds that

= 5[0 &)+ 08 &),
6.3)

[
do =5 lg (&) +0Q . &2)] - 2K
which are sufficiently accurate provided thats> 1jo§’(t, &) — 0§ (t, &)|. It is noted

that the magnitude of I, ) is larger than the magnitude of Rg) and that the magnitude

TABLE VI
Absolute CPU Times (s) for Runge—Kutta Methods Using Automatic Stepsize Control
with the Local Error Tolerances T = 104

N Method 1b Method 2b Method 3b Method 4b Method 5b Method 6b Method 7b Method 8b Method 9b Method 1

2 0.0103 0.0093 0.0129 0.0972 0.0205 0.0190 0.0483 0.0117 0.0176 0.0547
3 0.0213 0.0158 0.0203 0.2026 0.0371 0.0303 0.0947 0.0234 0.0273 0.0703
4 0.0330 0.0234 0.0283 0.3442 0.0664 0.0488 0.1802 0.0430 0.0430 0.0820
5 0.0582 0.0402 0.0456 0.5518 0.1084 0.0747 0.2905 0.0742 0.0742 0.1133
6 0.0893 0.0616 0.0640 0.8535 0.2114 0.1074 0.4595 0.1016 0.0996 0.1445
7 01321 0.0921 0.0913 1.2178 0.2422 0.1494 0.6650 0.1445 0.1406 0.1914
8 0.1677 0.1185 0.1133 1.5825 0.3267 0.1948 0.8784 0.1641 0.1582 0.2148
9 0.2336 0.1654 0.1572 21221 0.4351 0.2485 1.1938 0.2305 0.2227 0.2871
10 0.3068 0.2167 0.2064 2.7593 0.5537 0.3296 1.5508 0.2891 0.2793 0.3574
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TABLE VII
Absolute CPU Times (s) for Runge—Kutta Methods Using Automatic Stepsize Control

with the Local Error Tolerances Tha = 10>

N Method 1b Method 2b Method 3b Method 4b Method 5b Method 6b Method 7b Method 8b Method 9b Method 1

2 0.0176 0.0118 0.0130 0.1768 0.0347 0.0200 0.0986 0.0195 0.0125 0.0957
3 0.0348 0.0218 0.0204 0.3627 0.0683 0.0356 0.1865 0.0391 0.0430 0.1758
4 0.0522 0.0340 0.0283 0.6372 0.1201 0.0635 0.3394 0.0684 0.0703 0.2246
5 0.0917 0.0599 0.0457 1.0034 0.1948 0.1016 0.5264 0.1172 0.1230 0.3516
6 0.1389 0.0912 0.0641 1.5522 0.3867 0.1587 0.8091 0.1641 0.1660 0.4746
7 0.2053 0.1352 0.0913 2.2153 0.4375 0.2280 1.1729 0.2383 0.2363 0.6152
8 0.2607 0.1716 0.1134 2.8770 0.5835 0.3081 1.5205 0.2656 0.2598 0.7129
9 0.3613 0.2388 0.1571 3.8804 0.7793 0.4072 2.0688 0.3711 0.3633 0.9531
10 0.4743 0.3144 0.2066 5.0474 0.9922 0.5386 2.6543 0.4668 0.4473 1.2186

of Re(),) is much larger than the magnitude of(km). The magnitudes of the eigenvalues
are therefore determined by (i) and RéA,). Because the magnitude of &e) is much
larger than the magnitude of Itxy) the eigenvalues differ significantly.

It is recalled that systems with widely different eigenvalues are characterized as s
and that the stiffness is measured by the stiffness ratio [20-26]. A stiff system repres
a special problem for a Runge—Kutta method. More specifically, if a conditionally stal
Runge—Kutta method is applied to a stiff system, the solution components defined by
eigenvalues with large negative real parts will enforce a small stepsize in order to sat
the conditions of accuracy and stability. Furthermore, the solution components definec
the eigenvalues with small negative real parts will lead to a wide range of integratic
This implies that the execution time for a conditionally stable Runge—Kutta method m
become excessive. This is verified by the computation times for Methods 1a (1b) thro
6a (6b) which are seen (Figs. 8 and 9) to be increasing functions of the rate constant ir
fast motion regime. The explicit Runge—Kutta methods are more sensitive to the stiffn
than the semi-implicit and implicit schemes, which have better stability properties. Beca
the stability characteristics are almost equal for the explicit Runge—Kutta methods, tt
performance differs only slightly. It is found that Method 6a (6b) is more sensitive to tl
stiffness than Method 5a (5b) and that Method 4a (4b) depends only weakly on the stiffn
This reflects the better stability of Methods 4a (4b) and 5a (5b).
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FIG.5. Absolute computation time as function of the number of motional stdties the eigenvalue method.
The method implemented fixed stepsizes givertoyx 0.1 us (@), 5t = 0.2 us (M), andst = 0.4 us (A).
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FIG. 6. Absolute computation time as function of the number of motional stistésr explicit Runge—
Kutta methods. The methods used fixed stepsizes (first column) givén-by.1 us (), 5t = 0.2 «s (H), and
8t = 0.4 us (A) and automatic stepsize control (second column) with the local error toler@figes: 105 (#),
Trmax = 10~ (M), andT,™* = 10~ (#). The figure includes the classical explicit (3,3) Runge—Kutta method (firs
row), the classical explicit (4,4) Runge—Kutta method (second row), and the Butcher explicit (5,6) Runge—Ki
method (third row).

The accuracy properties of explicit Runge—Kutta methods are illustrated by the beha
of Methods 1a (1b) through 3a (3b), which have comparable stability properties. The el
functions shown in Fig. 1 demonstrate that the fourth-order Method 2a (2b) is more accu
by an order of magnitude compared with the third-order Method 1a (1b). In addition, it
seen that the fifth-order Method 3a (3b) is an order of magnitude more accurate than Met
2a (2b). For afixed stepsize, the computation time depends only on the number of derive
evaluations. It is seen that Method 1a requires three, Method 2a four, and Method 3a
derivative evaluations for each step. If the derivative evaluations are rate determining
suggests that the execution times for fixed stepsizes be reIatf;'-ﬁd:lay?ltzzj1 andtz, = %’IZa.
These predictions agree closely enough with the actual results to suggest that most o
execution time is spent evaluating the derivatives. In the slow and intermediate mot
regimes, the stepsizes are determined solely by the condition of accuracy. It is impor
to note that the increased accuracy in going from the third- to the fourth- to the fifth-orc
method is about 10 to 100, and that the computation times are similar. This indicates tha
added computation time is less important than the decreasing error. From these results i
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FIG. 7. Absolute computation time as function of the number of motional ststésr semi-implicit and
implicit Runge—Kutta methods. The methods implemented fixed stepsizes (first column) gisen=l/1 us
(®), 5t =0.24s (@), andst = 0.4 us (A) and automatic stepsize control (second column) with the local erro
tolerance§,"* = 10-° (#), T = 10~ (M), andT,™* = 102 (A). The figure includes the implicit (4,2) Runge—
Kutta method of Gauss type (first row), the semi-implicit (3,2) Runge—Kutta method of first Radau type (sec
row), the semi-implicit (4,3) Runge—Kutta method of Lobatto type (third row), and the stiffly A-stable (3,:
Runge—Kutta method of Padype (fourth row).

be concluded that Method 3a (3b) is preferable if high accuracy is required. The computa
times for Method 3b depend only weakly on the error tolerances demonstrating the h
accuracy of the scheme. It is evident that Method 2a (2b) is preferred for calculations
low accuracy.

For the semi-implicit and implicit Runge—Kutta methods, the accuracy properties
illustrated by Methods 5a (5b) and 6a (6b), which have similar stability properties. T
fourth-order Method 6a (6b) is more accurate by an order of magnitude than the third-or
Method 5a (5b). The result is that the stepsizes used by Method 5a (5b) are smaller tha
Method 6a (6b). This is verified by the computation times for Method 5b, which are long
than for Method 6b. The execution times for Method 6a are longer than for Method
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TABLE VI
Relative CPU Times for Runge—Kutta Methods Using Automatic Stepsize Control
with the Local Error Tolerances T = 104

Log(k) Method 1b Method 2b Method 3b Method 4b Method 5b Method 6b Method 7b Method 8b Method 9b Method 1

2.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
25 1.0000 1.0000 1.0000 0.9897 1.0000 1.0000 0.9982 1.0000 1.0000 0.9634
3.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9982 1.1709 0.8864 1.0000
35 0.9909 1.0000 1.0000 0.9949 1.0000 1.0270  0.9964 1.0000 1.0000 0.9287
4.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0541  0.9909 1.0000 1.0000 1.0000
4.5 0.9909 1.0000 1.0000 0.9846 1.0000 2.0865 0.9781 1.1709 1.0000 1.0000
5.0 0.9818 0.9892 1.0000 0.9743 0.9268 3.7189  0.9162 1.0000 1.0000 1.1060
5.5 1.4273 1.1075 1.0155 1.4218 1.5707 6.4649 1.2878 1.0000 1.0000 1.3931
6.0 2.5001 2.4946 1.8993 2.6728 2.7610 10.5622 2.3953 1.1709 1.0000 1.7148
6.5 3.9000 4.1075 3.2791  3.5412 3.8829 15.4973 3.5155 1.0000 1.0000 1.2852
7.0 5.6091 7.2796 5.9922 4.1687 6.0244 20.0811 4.3461 1.0000 0.8864 1.2139
7.5 11.7182 17.0860 15.0000 4.6111 10.1767  25.5568 4.9763 1.0000 1.0000 1.213¢
8.0 29.4546  42.2043  40.9070  4.9938 17.9366 32.7568 5.7395 1.0000 1.0000 1.213¢
8.5 86.2000 133.1720 123.0620 5.1595 47.7561 68.3838  7.0893 1.0000 0.8864 1.213¢
9.0 183.6818 277.1720 313.6434 55504 140.8878 187.4486 4.2222 1.1624 1.1080 1.250

Note.The relative computation time is definedtay(k) = taps(K)t;=(k = 102 Hz), wheret,ps(K) is the absolute
computation time.

because it involves more computation per step. However, the difference is small indicat
that Method 6a (6b) is superior to Method 5a (5b) when high accuracy is required. T
computation times for Method 4a (4b) are longer than for Method 6a (6b). Because th
methods have similar accuracy properties, the difference derives from the fact that Met
4a (4b) involves more computation per step. This seems to suggest that Method 6a
is better than Method 4a (4b) in the slow and intermediate motion regimes. However,
inferior stability characteristics of Method 6a (6b) show that Method 4a (4b) is the preferr
method.

The efficiency of the Runge—Kutta methods may be expressed by the power functi
listed in Tables IX and X. The results show that the most important effect of decreasi
the stepsize or error tolerance is to increase the premultiplying factor while the expon
is almost constant. Another feature is that the exponent is smaller for the methods
implement fixed stepsizes compared with the methods that use automatic stepsize cotr

TABLE IX
Power Function Representations of Absolute CPU Times for Runge—Kutta Methods

st =0.4us st =0.2us st =0.1us
Method 1a 1.43711073, 1.7091 257711073, 1.7431 4.87561073, 1.7533
Method 2a 1.817710°3, 1.7179 3.317710°%, 1.7438 6.339510°%, 1.7564
Method 3a 2.6982107°3, 1.7373 5.217910°3,1.7414 9.813210°3,1.7641
Method 4a 8.2423107%, 1.7973 1.66921072, 1.7904 3.29001072, 1.7953
Method 5a 3.48181073, 1.7645 6.584310°%, 1.7819 1.259410°2, 1.7982
Method 6a 3.679110°3, 1.7978 7.127110°3, 1.8037 1.36561072, 1.8203
Method 7a 7.9794107°%, 1.8230 1.55941072, 1.8299 2.96091072, 1.8527
Method 8a 2.94701073, 1.4001 459511072, 1.5031 8.9816107%, 1.5125
Method 9a 3.9252107°3, 1.3647 7.95561073, 1.3345 1.64101072, 1.2844
Method 10a 1.63171072,1.1723 3.22611072,1.1712 6.33121072,1.1765

Note.The representations are defined by specifying the parameters (a, b) suck-that°.
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FIG. 8. Relative computation timée (K) = tans(K)t,m(k = 10? Hz) as function of the rate constaktfor
explicit Runge—Kutta methods. The methods used automatic stepsize control with the local error toleral
Tmax = 10-4. The figure includes the classical explicit (3,3) Runge—Kutta metidddthe classical explicit (4,4)

Runge—Kutta methodl{), and the Butcher explicit (5,6) Runge—Kutta meth®d.(

The premultiplying factor tends to be smaller for the methods that are based on autorr
stepsize control than for the methods that use fixed stepsizes. For the methods tha
either fixed stepsizes or automatic stepsize control, the exponent is almost invariant w
the premultiplying factor depends on the scheme. The results suggest that automatic ste
control is the preferred method of operation. Although the execution time may be lon
than for fixed stepsizes, the accuracy is expected to be higher especially for systems of |
dimension.

The computation time in the slow and intermediate motion regimes is longer for t
fourth-order Methods 4a (4b) and 6a (6b) compared with Method 2a (2b). Moreover, i
realized that the computation time for the third-order Method 5a (5b) is longer than
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FIG. 9. Relative computation timge(K) = taps(K)tys (k = 102 Hz) as function of the rate constaktfor
semi-implicit and implicit Runge—Kutta methods. The methods used automatic stepsize control with the Ic

error tolerance3 "™ = 10~“. The figure includes the implicit (4,2) Runge-Kutta method of Gauss #pgtiie
semi-implicit (3,2) Runge—Kutta method of first Radau tyl,@nd the semi-implicit (4,3) Runge—Kutta method

of Lobatto type #).
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TABLE X
Power Function Representations of Absolute CPU Times for Runge—Kutta Methods

T = 103 T =104 T =10
Method 1b 1.480910°%, 2.0102 2.042010°%, 2.1321 35653103, 2.0738
Method 2b 2.037910°%, 1.7271 1.810310°%, 2.0127 2.301610°%, 2.0827
Method 3b 3.063510°%, 1.7503 3.068010°%, 1.7499 3.096010°%, 1.7457
Method 4b 9.228910°%, 2.1187 2.0595102, 2.0935 3.7232102, 2.0979
Method 5b 3.791210°%, 1.8797 4.018710°%, 2.1200 6.997210°%, 2.1376
Method 6b 4.616210°3, 1.7765 4.497910°%, 1.8070 3.889810°%, 2.0948
Method 7b 8.531510°3, 1.9204 9.188510°%, 2.1962 2.027910°%,2.0812
Method 8b 3.035110°%, 1.6730 2.770210°%, 2.0068 4.631110°, 1.9894
Method 9b 5.215910°%, 1.3202 4.346710°%, 1.7655 35139107, 2.1303
Method 10b 1.985310°2, 1.1676 1.947110°2, 1.1789 3.015210°%, 1.5539

Note.The representations are defined by specifying the parameters (a, b) suck-that°.

Method l1la (1b). This is because Methods 4a (4b) through 6a (6b) are semi-implicit
implicit while Methods 1a (1b) through 3a (3b) are explicit. For most systems, the sol
tion of the implicit equations is only partially compensated for by the smaller number
stages and the higher order of the semi-implicit or implicit schemes. Because the mett
are of comparable accuracy and sufficiently stable in the slow and intermediate mot
regimes, this is measured by the computation times, which are significantly longer
semi-implicit or implicit methods than for explicit methods. This implies that Method
la (1b) through 3a (3b) are superior to Methods 4a (4b) through 6a (6b) in the sl
and intermediate motion regimes. Another observation is that the explicit Runge—Kt
methods in the slow and intermediate motion regimes are more efficient than the eig
value method by a factor between two and five. The power functions show that the €
ciency increases with the dimension of the system and approaches an order of magni
for large systems. Because the computation times involved in MAS NMR calculatio
may be very long, this is an important result. An additional advantage is that the sc
tion is more accurate because automatic stepsize control is impossible for the eigenv
method.

6.3. Stiffly A-Stable Runge—Kutta Methods

The stability problem is avoided in the case of an A-stable Runge—Kutta method. Hc
ever, for a reasonable stepsize, the solution components defined by the eigenvalues
large negative real parts may be approximated inaccurately initially when they are nonr
ligible. These inaccurate components may reduce the overall accuracy. Thus, althougt
components of the solution defined by the eigenvalues with large negative real parts |
be of no particular interest, the condition of accuracy may enforce a small stepsize over
entire range of integration. The result is that the execution time may be prohibitive for an
stable Runge—Kutta method. For these systems we therefore require that the characte
roots closely approximate not only the solution components defined by the eigenvalues
small negative real parts but also the solution components defined by the eigenvalues
large negative real parts. A method with this property is characterized as stiffly A-stal
[23, 24]. The literature presents relatively few examples of stiffly A-stable Runge—Kut
methods, and many schemes are based on extended formulas [43]. In order to improv
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efficiency, we have designed a set of stiffly A-stable Runge—Kutta methods by restrict
the characteristic roots to be superdiagonaleRPgairoximants [23, 24]. An example is the
stiffly A-stable (3,2) Runge—Kutta method of Reiype

~ R 1
D (ty, Y(t), Sty) = 5[91 + 02,

1 . 1
o1 = f<tk + éﬁtk, y(te) + 65tk[391 - 92]>, (6.4)

2. 1
02 = f<tk + éﬁtk, y(t) + éﬁtk[3gl + gz]>,
which is denoted Method 7a for fixed stepsizes and Method 7b in the case of autom
stepsize control. It is noted that stiffly A-stable methods generally have a low order for
number of stages because of the restrictions on the characteristic roots. The results of nt
ical experiments with this method are listed in Tables Il through VIIl and illustrated in Fig.

Because Method 4a (4b) is A-stable but not stiffly A-stable the computation time is
increasing function of the rate constants in the fast motion regime. However, it is noted t
Method 4a (4b) is not as sensitive to the stiffness as Methods 5a (5b) and 6a (6b) bec
of the better stability. The effect of the stiffness is less pronounced for Method 7a (7b)
the results (Table VIII) indicate that it decreases for large rate constants. Since the metl
involve the same number of implicit stages, the execution time for Method 4a is similar
Method 7a. However, the computation time for Method 7b is shorter than for Method ¢
This demonstrates that the form of the characteristic roots may be more important thar
order in determining the efficiency of the method. The conclusion is that Method 7a (7b
the best implicit scheme in the fast motion regime.

6.4. Modified Runge—Kutta Methods

Another approach to solving the stochastic Liouville—von Neumann equation is to rew:
the system in a form with a vanishing stiffness ratio. This has the advantage that one may
explicit Runge—Kutta methods to obtain a solution. In the case of the stochastic Liouvil
von Neumann equation, the form of the coefficient matrix makes it possible to remove
stiffness completely. This is realized by considering the equation

%Iy(t)) =AM®ly®) (6.4)
and rewriting the coefficient matrix in the form
A() = S+ R(), (6.5)
whereS is defined by the stochastic operator &d) by the Hamiltonian. Because the
approach does not depend on whetBandR(t) commute, this form can be obtained for

any stochastic operator and any Hamiltonian and is particularly useful @tsahe source
of the stiffness. In order to eliminate the stiffness we consider the transformation

(1)) = exp(—=Shy(1)), (6.6)
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which when differentiated leads to
9
ﬁlza)) = exp(—SH)R(t) exp(St)|z(1)). (6.7)

It is noted that the coefficient matrix for this system has the same eigenvalue structur
R(t) which is determined by the Hamiltonian. This implies that the transformed syste
has a vanishing stiffness ratio. For a stiff system it is difficult to determing-eXp.
However, it is trivial to evaluate expt) using the eigenvalue method. This is sufficient to
obtain a Runge—Kutta solution and usually one does not need to evaluéteStxpMore
specifically, we consider the Runge—Kutta equations

q
12(te 1)) = [2(t0) + 8t Y wrlgr), (6.8)

r=1

where

q
19r) = exp(—[tk + o St SR (t + atr t) exp([t + o 5] S) {ﬁ(tk)) + 8tk Z ,Brs|gs)]
s=1

(6.9)

includes the coefficient matrix of the transformed system. The equations are rewritter
the form

q
[9(tks1)) = eXPSLS) (1)) +8tc > wr exp([L— e [8tS)R (t +orr t)
=1

q
x [exp(er &S F (1)) + Y _ Brs expller — aslotS)hs)],  (6.10)

s=1

where

q
Ihe) = Reti + o 8t [Pl 84S 9 (1)) + 3t D Brslhe)] (6.11)

s=1

has been introduced for simplicity. These equations involve matrix exponentials that n
be readily evaluated using the eigenvalue method.

Because the transformation eliminates the stiffness, the approach is likely to be succe:
for explicit Runge—Kutta methods. In these cases, the modified Runge—Kutta equations
be solved explicitly leading to a relatively high efficiency. The evaluation of the matri
exponentials reduces the performance of the methods but in many cases the computat
overhead is acceptable. For A-stable semi-implicit or implicit methods, the stepsizes ma:
larger because the stiff components have been eliminated. However, the difficulty in solv
the Runge—Kutta equations suggests that they are unlikely to be efficient. The modi
classical explicit (3,3) Runge—Kutta method is Method 8a (8b), the modified classit
explicit (4,4) Runge—Kutta method is Method 9a (9b), and the modified Butcher expli
(5,6) Runge—Kutta method is Method 10a (10b). The results of numerical experiments v
these methods are listed in Tables Il through VIII and illustrated graphically in Fig. 10.
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FIG. 10. Absolute computation time as function of the number of motional stdtésr modified explicit
Runge—Kutta methods. The methods used fixed stepsizes (first column) gistesty1 s (¢), 5t = 0.2 us (W),
andst = 0.1 us (A) and automatic stepsize control (second column) with the local error tolerafjees- 10-°
(®), T =10 (M), and T = 10~ (A). The figure includes the modified classical explicit (3,3) Runge-
Kutta method (first row), the modified classical explicit (4,4) Runge—Kutta method (second row), and the modi
Butcher explicit (5,6) Runge—Kutta method (third row).

The numerical results reveal that, in the slow and intermediate motion regimes,
modified explicit Runge—Kutta methods are less efficient than the explicit schemes. Thi
because the amount of computation involved in the modified methods is larger for each:
of calculation. Because of the computational overhead, it is expected that modified exp
Runge—Kutta methods will always be less efficient than explicit schemes in the slow «
intermediate motion regimes. However, it is seen that Methods 8a (8b) and 9a (9b) are
slightly less efficient than the explicit methods. Moreover, the modified explicit Rung
Kutta methods are orders of magnitude more efficient than the explicit, semi-implicit, a
implicit schemes in the fast motion regime. The explicit, semi-implicit, and implicit methoc
are inefficient because of the stiffness while the modified explicit schemes approximate
stiff components accurately. This is reflected in the computation times, which increase v
the rate constant for explicit, semi-implicit, and implicit methods, but are almost const:
for the modified explicit schemes. Although the stiffly A-stable Runge—Kutta methods ¢
useful for large stiffness ratios they are less efficient than the modified explicit Runge—Kt
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methods. An example where the modified methods would be valuable is in the calculat
of motional effects for urea and thiourea inclusion compounds that usually exhibit fe
motion [14].

7. SUMMARY

The MAS NMR experiment has become one of the most successful methods for obtair
information about molecular structure and motion in solid materials. The most fundamer
description of the MAS NMR experimentis based on the stochastic Liouville—von Neuma
equation. Inthis paperwe have implemented a Lie algebra formalism to rewrite the stoche
Liouville—von Neumann equation in the form of a linear homogeneous system of coup
first-order differential equations. The approach includes several computationally import
features and may be implemented for MAS NMR experiments on any nuclear spin syst

In the case of the MAS NMR experiment, it is impossible to obtain an explicit solutio
to the stochastic Liouville—von Neumann equation. As an alternative we have used Run
Kutta methods to approximate the solution. These have the advantages of simplicity
relatively high efficiency and may be implemented with automatic stepsize control.
provide an explicit example we have applied the Runge—Kutta methods to the deute
MAS NMR experiment, which is of widespread interest as one of the most imports
methods for studying molecular motion in solids.

In the case of the deuteron MAS NMR experiment, we have evaluated the performa
of different Runge—Kutta methods including explicit, semi-implicit, and implicit scheme:
The explicit methods examined in this paper are the classical explicit (3,3) Runge—Kt
method, the classical explicit (4,4) Runge—Kutta method, and the Butcher explicit (5
Runge—Kutta method. The semi-implicit and implicit methods are the implicit (4,2) Rung
Kutta method of Gauss type, the semi-implicit (3,2) Runge—Kutta method of first Rad
type, and the semi-implicit (4,3) Runge—Kutta method of Lobatto type. The results
the numerical experiments have shown that no method performs better than any othe
every set of rate constants. It is therefore necessary to learn about each method in «
to decide which one to use for each set of rate constants. The reason is that the stoct
Liouville—von Neumann equation is stiff with a stiffness ratio that increases with the re
constants.

The results have shown that explicit Runge—Kutta methods are superior to other sche
in the slow and intermediate motion regimes. In these regimes the stiffness is sufficiel
small that the computation is determined solely by the condition of accuracy. Althou
semi-implicit and implicit Runge—Kutta methods require fewer derivative evaluations, tl
solution of the simultaneous equations more than compensates for this. The performan
the methods was evaluated in the case of fixed stepsizes and automatic stepsize contro
found that automatic stepsize control is the preferred method of operation. The differe
in computation time for fixed stepsizes and automatic stepsize control is sufficiently s
to justify the improved accuracy especially for systems of high dimension. Because of
increased accuracy, the classical explicit (4,4) Runge—Kutta method is found to be m
efficient than the classical explicit (3,3) Runge—Kutta method. However, the Butcher expl
(5,6) Runge—Kutta method is less efficient than the classical explicit (4,4) Runge—KL
method. The reason is that the increased number of derivative evaluations compen:
for the increased accuracy. However, because the computation times are almost equa
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classical explicit (4,4) Runge—Kutta method is best for calculations of low accuracy, wh
the Butcher explicit (5,6) Runge—Kutta method is to be preferred for calculations of hi
accuracy.

In the fast motion regime, the explicit Runge—Kutta methods are very inefficient beca
of the high stiffness of the stochastic Liouville—von Neumann equation. In this regir
the stability of the Runge—Kutta methods becomes important. It is noted that there is
advantage of implicit methods when the sole criterion is accuracy. However, the impl
methods have desirable stability properties, which in this case is the primary considerat
The results have shown that the semi-implicit (3,2) Runge—Kutta method of first Rac
type and the semi-implicit (4,3) Runge—Kutta method of Lobatto type are inefficient in tl
fast motion regimes. The reason is that these methods are conditionally stable. It is fo
that the semi-implicit (3,2) Runge—Kutta method of first Radau type is more efficient th
the semi-implicit (4,3) Runge—Kutta method of Lobatto type because it has better stabi
properties. The results have shown that the implicit (4,2) Runge—Kutta method of Ga
type is better than the semi-implicit (3,2) Runge—Kutta method of first Radau type and
semi-implicit (4,3) Runge—Kutta method of Lobatto type in the fast motion regime. Tt
implicit (4,2) Runge—Kutta method of Gauss type is A-stable and therefore sufficien
stable. However, the method is not stiffly A-stable, and the condition of accuracy makes
method relatively inefficient for high rate constants.

It is noted that there are two alternatives to solving the stochastic Liouville—ve
Neumann equation in the fast motion regime. The most obvious approach is to imy
ment stiffly A-stable semi-implicit or implicit Runge—Kutta methods. These approxima
the stiff components accurately and are less sensitive to the stiffness. We have desi
stiffly A-stable Runge—Kutta methods by restricting the characteristic roots to be suy
diagonal Pad approximants. These are shown to be the best implicit schemes in the -
motion regime. An alternative is to rewrite the stochastic Liouville—von Neumann equati
in a form with a small or vanishing stiffness ratio. In this paper, we have introduced a tra
formation that eliminates the stiffness completely. This has been combined with expl
schemes to define a set of modified explicit Runge—Kutta methods. We have shown
these are the most efficient schemes in the fast motion regime. The modified explicit (:
and (4,4) Runge—Kutta methods are only slightly less efficient than the explicit scheme
the slow and intermediate regimes. This demonstrates that the modified explicit (3,3)
(4,4) Runge—Kutta are useful for solving the stochastic Liouville—von Neumann equat
for all motional regimes.

The results of this research have shown that the Runge—Kutta formalism is a us
and efficient approach to MAS NMR lineshape calculations. The formalism provides
set of integration methods that improve the accuracy of the calculations and that |
to significantly shorter computation times. The experiments have shown that the Run
Kutta methods improve the computational efficiency by a factor between two and f
compared with the eigenvalue method. It is shown that the efficiency increases with
dimension of the system, and for large systems the improvement may be more than an ¢
of magnitude. Because of the long computation times involved in MAS NMR calcul
tions, this is a significant result. The possibility of implementing automatic stepsize cont
is another important feature, which makes the approach more accurate than the ei
value method. The modified Runge—Kutta methods developed in this paper extends
formalism to calculations involving fast molecular motion and stiff systems of differenti
equations.
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